Solutions

Exam Probability and Measure (WBMA024-05) Monday June 19 2023, 15.00-17.00

1. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, where the σ-algebra \mathcal{A} is generated by the finite partition $\mathcal{P}=\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}$ of Ω. Let $f: \Omega \rightarrow \mathbb{R}$ be an $(\mathcal{A}, \mathcal{B})$-measurable function. Show that there exist $\alpha_{1}, \cdots, \alpha_{r} \in \mathbb{R}$, such that f may be written as

$$
f=\sum_{i=1}^{r} \alpha_{i} \mathbb{1}_{A_{i}} .
$$

That is, show that f is constant on the separate elements of \mathcal{P}.
SOLUTION: Suppose that there is $A_{i} \in \mathcal{P}$ on which f is not constant. Say that there are distinct $x, y \in \mathbb{R}$, such that $f^{-1}(x) \cap A_{i} \neq \emptyset$ and $f^{-1}(y) \cap A_{i} \neq \emptyset$ and therefore $f^{-1}(x) \cap A_{i}$ is a strict and non-empty subset of A_{i}. Which implies that $f^{-1}(x) \cap A_{i}$ is not in the powerset of \mathcal{P} and therefore not in the σ-algebra generated by \mathcal{P} (note that the powerset of a generating set always contains the σ-algebra generated by that set). Because $\{x\}$ and $\{y\}$ are in \mathcal{B}, this contradicts that f is an $(\mathcal{A}, \mathcal{B})$ measurable function.
2. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, with $\mu(\Omega)=\infty$ and let $f: \Omega \rightarrow \mathbb{R}$ be an $(\mathcal{A}, \mathcal{B})$ measurable function. Assume $f \in \mathcal{L}^{p}(\Omega)$ for all $p \in[1, \infty]$ and that $\|f\|_{\infty}>0$.
a) Provide the definitions of $\|f\|_{\infty}$ and $\|f\|_{p}$.

Solution: $\|f\|_{\infty}=\inf \{c \geq 0: \mu(\{\omega \in \Omega:|f(\omega)|>c\})=0\}$.
Or equivalently $\|f\|_{\infty}=\inf \{c \geq 0:|f(\omega)| \leq c$ almost everywhere $\}$.
While $\|f\|_{p}=\left(\int_{\Omega}|f|^{p} d \mu\right)^{1 / p}$ for $f \in \mathcal{L}^{p}$
b) Show that $\|f\|_{\infty} \leq \liminf _{p \rightarrow \infty}\|f\|_{p}$.

Hint: Take the integral of some useful function over $\Gamma=\{\omega \in \Omega:\|f(\omega)\|>M\}$, where $M \in\left(0,|f|_{\infty}\right)$. Relate this integral to $\|f\|_{\infty}$ and $\|f\|_{p}$ for given finite p.
Solution: We know $\|f\|_{\infty}>0$, so we can choose $M \in\left(0,\|f\|_{\infty}\right)$ and set Γ as in the hint. By the definition of $\|f\|_{\infty}$ and by $M<\|f\|_{\infty}$ we have $\mu(\Gamma)>0$. Now

$$
\|f\|_{p}=\left(\int_{\Omega}|f|^{p} d \mu\right)^{1 / p} \geq\left(\int_{\Gamma}|f|^{p} d \mu\right)^{1 / p} \geq\left(\int_{\Gamma} M^{p} d \mu\right)^{1 / p}=M(\mu(\Gamma))^{1 / p}
$$

Taking liminf on both sides gives that for all $M<\|f\|_{\infty}$ we have $\liminf \|f\|_{p} \geq M$ (where we only use $\mu(\Gamma)>0$), which finishes the proof.
c) Formulate Hölder's inequality.

Solution: If $p \in[1, \infty]$ and $1 / p+1 / q=1$ and $g_{1} \in \mathcal{L}^{p}$ and $g_{2} \in \mathcal{L}^{q}$, then $\left\|g_{1} g_{2}\right\| \leq$ $\left\|g_{1}\right\|_{p}\left\|g_{2}\right\|_{q}$.
$\left.\mathbf{d}^{*}\right)$ Show that $\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}$.
Hint: Show that $\|f\|_{p} \leq\left(\|f\|_{1}\right)^{1 / p}\left(\|f\|_{\infty}\right)^{1-1 / p}$ and deduce that $\lim _{\sup _{p \rightarrow \infty}}\|f\|_{p} \leq$ $\|f\|_{\infty}$. Combine this with part b).
Solution: Since from b) we know

$$
\|f\|_{\infty} \leq \liminf _{p \rightarrow \infty}\|f\|_{p},
$$

it is enough to prove

$$
\underset{p \rightarrow \infty}{\limsup }\|f\|_{p} \leq\|f\|_{\infty}
$$

Recall $\|f\|_{p}=\left(\int_{\Omega}|f|^{p} d \mu\right)^{1 / p}$. By Hölder's inequality, we know (using $g_{1}=|f|$ and $\left.g_{2}=|f|^{p-1}\right)$ that

$$
\left(\|f\|_{p}\right)^{p}=\int_{\Omega}|f|^{p} d \mu=\int_{\Omega} g_{1} g_{2} d \mu \leq\left\|g_{1}\right\|_{1}\left\|g_{2}\right\|_{\infty}=\left.\|f\|_{1}\| \| f\right|^{p-1}\left\|_{\infty}=\right\| f \|_{1}\left(\|f\|_{\infty}\right)^{p-1},
$$

where the last equality follows from the definition of $\|f\|_{\infty}$. So,

$$
\|f\|_{p} \leq\left(\|f\|_{1}\right)^{1 / p}\left(\|f\|_{\infty}\right)^{1-1 / p}
$$

Taking $\lim \sup _{p \rightarrow \infty}$ on both sides leads to the desired

$$
\underset{p \rightarrow \infty}{\limsup }\|f\|_{p} \leq\left(\|f\|_{1}\right)^{0}\left(\|f\|_{\infty}\right)^{1}=\|f\|_{\infty} .
$$

3. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and let $A_{n} \in \mathcal{A}$ for $n \in \mathbb{N}$, such that

$$
\mathbb{P}\left(\bigcap_{i \in \mathcal{I}} A_{i}\right)=\prod_{i \in \mathcal{I}} \mathbb{P}\left(A_{i}\right) \quad \text { for all finite } \mathcal{I} \subset \mathbb{N}
$$

That is, the A_{i} 's are mutually independent. Let

$$
\begin{aligned}
& A=\left\{\omega \in \Omega: \omega \in A_{i} \text { for infinitely many values of } i\right\} \\
& \qquad=\left\{\omega \in \Omega: \text { for all } n \in \mathbb{N} \text { there is an } i \geq n \text { such that } \omega \in A_{i}\right\}
\end{aligned}
$$

a) Show that $A \in \mathcal{A}$.

Solution: The definition of A translates to

$$
A=\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_{i}
$$

Note that $\bigcup_{i=n}^{\infty} A_{i}$ is in \mathcal{A} for all n, because a σ-algebra is closed under countable unions, and then $A \in \mathcal{A}$ because a σ-algebra is closed under countable intersections.
b) Show that if $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty$, then $\mathbb{P}(A)=1$.

Hint: You may use $1-x \leq e^{-x}$ for all $x \in \mathbb{R}$.
Solution: Note that

$$
\mathbb{P}(A)=1-\mathbb{P}\left(A^{C}\right)=1-\mathbb{P}\left(\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right) \geq 1-\sum_{n=1}^{\infty} \mathbb{P}\left(\bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right)
$$

Then we note that for any $n, n^{\prime} \in \mathbb{N}$ with $n^{\prime}>n$ we have

$$
\mathbb{P}\left(\bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right) \leq \mathbb{P}\left(\bigcap_{i=n}^{n^{\prime}}\left(A_{i}\right)^{C}\right)=\prod_{i=n}^{n^{\prime}} \mathbb{P}\left(\left(A_{i}\right)^{C}\right)
$$

by the independence of the A_{i} 's and thus the independence of the $\left(A_{i}\right)^{C}$. So,

$$
\mathbb{P}\left(\bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right) \leq \prod_{i=n}^{n^{\prime}}\left(1-\mathbb{P}\left(A_{i}\right)\right) \leq \prod_{i=n}^{n^{\prime}} e^{-\mathbb{P}\left(A_{i}\right)}=e^{-\sum_{i=n}^{n^{\prime}} \mathbb{P}\left(A_{i}\right)}
$$

where we have used the Hint in the second inequality. Note that because $\mathbb{P}\left(A_{i}\right) \leq 1<$ ∞ we have that $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty$ implies $\sum_{i=n}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty$ for all $n \in \mathbb{N}$. Because $\mathbb{P}\left(\bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right)$ does not depend on n^{\prime} and $\mathbb{P}\left(\bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right) \leq e^{-\sum_{i=n}^{n^{\prime}} \mathbb{P}\left(A_{i}\right)}$, for all $n^{\prime}>n$, we obtain by $n^{\prime} \rightarrow \infty$ that $\mathbb{P}\left(\bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right) \leq e^{-\sum_{i=n}^{\infty} \mathbb{P}\left(A_{i}\right)}=0$ and therefore,

$$
\mathbb{P}(A)=1-\mathbb{P}\left(A^{C}\right) \geq 1-\sum_{n=1}^{\infty} \mathbb{P}\left(\bigcap_{i=n}^{\infty}\left(A_{i}\right)^{C}\right)=1-\sum_{n=1}^{\infty} 0=1
$$

Let C be a circle with circumference 1 (i.e. with radius $1 /(2 \pi))$. One by one randomly chosen closed arcs (on C) denoted by $I_{i}(i \in \mathbb{N})$ of respective lengths ℓ_{i} are colored red. Assume further that $1>\ell_{1} \geq \ell_{2} \geq \cdots$. Denote the midpoint of I_{i} by x_{i}. The x_{i} are chosen independently and uniformly on C. Let S be the part of the circle that is colored red. That is,

$$
S=\cup_{i=1}^{\infty} I_{i} .
$$

Note that the uniformity of the x_{i} 's implies that for every $c \in C$ and $i \in \mathbb{N}$ we have $\mathbb{P}\left(c \in I_{i}\right)=\ell_{i}$. Define

$$
k_{n}=2^{n+1} \times n!\quad \text { and } \quad K_{n}=\sum_{i=1}^{n} k_{i} \quad \text { both for } n \in \mathbb{N}
$$

For $K_{n-1}<i \leq K_{n}$ let $\ell_{i}=1 /\left(2 k_{n}\right)$. So, there are k_{n} arcs of length $1 /\left(2 k_{n}\right)$.
c) Show that $\mathbb{P}(c \in S)=1$ for all $c \in C$, and that C will eventually be red almost everywhere (with respect to Lebesque measure on C).
(10pt)
Solution: Fix $c \in C$. Define $A_{i}=\left\{c \in I_{i}\right\}$, so $\mathbb{P}\left(A_{i}\right)=\ell_{i}$. Note that (with $\left.K_{0}=0\right)$,

$$
\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\sum_{n=1}^{\infty} \sum_{i=K_{n-1}+1}^{K_{n}} \mathbb{P}\left(A_{i}\right)=\sum_{n=1}^{\infty} \sum_{i=K_{n-1}+1}^{K_{n-1}+k_{n}} 1 /\left(2 k_{n}\right)=\sum_{n=1}^{\infty} 1 / 2=\infty
$$

and apply part b to obtain that c is even in infinitely many I_{i}.
Now assume that we would have picked $c \in C$ randomly according to Lebesque measure (that is uniformly), then still $\mathbb{P}(c \in S)=1$, so S covers C almost everywhere.
$\left.\mathbf{d}^{*}\right)$ Show that $\mathbb{P}(C=S)<1$.
Hint: You may use the following approach:
Show that with positive probability, there is an infinite sequence of non-empty arcs $a_{1} \supset a_{2} \supset \cdots$ of respective lengths $1 /\left(2 k_{1}\right), 1 /\left(2 k_{2}\right), \cdots$, such that $a_{n} \cap\left(\cup_{i=1}^{K_{n}} I_{i}\right)=\emptyset$. You can do this by first showing that a_{1} exists with strictly postive probability and then condition on that a_{n} exists. Then split a_{n} in $k_{n+1} /\left(2 k_{n}\right)$ disjoint arcs of length $1 / k_{n+1}$, and show that with "desirable" probability at least one of those arcs does not contain any of the x_{i} for $i \leq K_{n+1}$.
You may use without further proof that there exists $z \in(0,1)$, such that out of any subset of j disjoint arcs of length $1 / k_{n+1}$ the probability that at least one of those arcs does not contain any of the x_{i} with $K_{n}<i \leq K_{n+1}$ is larger than $1-z^{-j}$ for all $n \in \mathbb{N}$.
Solution: Follow the hint: Partition C in k_{1} arcs of length $1 / k_{1}$. The probability that one of those arcs does not contain any of the points $x_{1}, \cdots, x_{k_{1}}$ is strictly positive (exact probability is not important). Denote this probability by p_{1}. Choose one such arc and call it b_{1}. Because the distance of a point in I_{i} to x_{i} is at most $\ell_{i} / 2$, if b_{1} exists, it contains a subarc a_{1} of length $1 /\left(2 k_{1}\right)$ such that $a_{1} \cap\left(\cup_{i=1}^{K_{1}} I_{i}\right)=\emptyset$.
Now suppose that we have a_{n} of length $1 /\left(2 k_{n}\right)$ such that $a_{n} \cap\left(\cup_{i=1}^{K_{n}} I_{i}\right)=\emptyset$. Then Partition a_{n} in $k_{n+1} /\left(2 k_{n}\right)=n+1$ disjoint arcs of length $1 / k_{n+1}$. The probability that at least one of those subarcs contains none of the x_{i} for $K_{n}<i \leq K_{n}+k_{n+1}=K_{n+1}$ is by the last part of the hint at least $1-z^{n+1}=: p_{n+1}$ for some $z<1$. Arguing as for a_{1}, the probability that a_{n+1} exists given that $a_{1}, \cdots a_{n}$ exist is p_{n+1}.

The probability that a_{n} exist on every level $n \in \mathbb{N}$ is bounded from below by $\prod_{n=1}^{\infty} p_{n}$, which for every $N \in \mathbb{N}$ is equal to $\prod_{n=1}^{N} p_{n} \times \prod_{n=N+1}^{\infty} p_{n}$. Then,

$$
\prod_{N+1}^{\infty} p_{n}=\prod_{n=N+1}^{\infty}\left(1-z^{n}\right) \geq 1-\sum_{n=N+1}^{\infty} z^{n}=1-\frac{z^{N+1}}{1-z}
$$

which is strictly positive for large enough N and the question is answered.

