
Solutions

Exam Probability and Measure (WBMA024-05)

Monday June 19 2023, 15.00-17.00

1. Let (Ω,A, µ) be a measure space, where the σ-algebra A is generated by the finite
partition P = {A1, A2, · · · , Ar} of Ω. Let f : Ω → R be an (A,B)-measurable function.
Show that there exist α1, · · · , αr ∈ R, such that f may be written as

f =
r∑

i=1

αi11Ai .

That is, show that f is constant on the separate elements of P. (15pt)

SOLUTION: Suppose that there is Ai ∈ P on which f is not constant. Say that there
are distinct x, y ∈ R, such that f−1(x) ∩ Ai ̸= ∅ and f−1(y) ∩ Ai ̸= ∅ and therefore
f−1(x) ∩ Ai is a strict and non-empty subset of Ai. Which implies that f−1(x) ∩ Ai is
not in the powerset of P and therefore not in the σ-algebra generated by P (note that
the powerset of a generating set always contains the σ-algebra generated by that set).
Because {x} and {y} are in B, this contradicts that f is an (A,B) measurable function.
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2. Let (Ω,A, µ) be a measure space, with µ(Ω) = ∞ and let f : Ω → R be an (A,B)
measurable function. Assume f ∈ Lp(Ω) for all p ∈ [1,∞] and that ∥f∥∞ > 0.

a) Provide the definitions of ∥f∥∞ and ∥f∥p. (10pt)

Solution: ∥f∥∞ = inf{c ≥ 0 : µ({ω ∈ Ω : |f(ω)| > c}) = 0}.
Or equivalently ∥f∥∞ = inf{c ≥ 0 : |f(ω)| ≤ c almost everywhere}.

While ∥f∥p =
(∫

Ω |f |pdµ
)1/p

for f ∈ Lp

b) Show that ∥f∥∞ ≤ lim infp→∞ ∥f∥p. (10pt)

Hint: Take the integral of some useful function over Γ = {ω ∈ Ω : ∥f(ω)∥ > M}, where
M ∈ (0, |f |∞). Relate this integral to ∥f∥∞ and ∥f∥p for given finite p.

Solution: We know ∥f∥∞ > 0, so we can choose M ∈ (0, ∥f∥∞) and set Γ as in the
hint. By the definition of ∥f∥∞ and by M < ∥f∥∞ we have µ(Γ) > 0. Now

∥f∥p =
(∫

Ω
|f |pdµ

)1/p

≥
(∫

Γ
|f |pdµ

)1/p

≥
(∫

Γ
Mpdµ

)1/p

= M (µ(Γ))1/p .

Taking lim inf on both sides gives that for all M < ∥f∥∞ we have lim inf ∥f∥p ≥ M
(where we only use µ(Γ) > 0), which finishes the proof.

c) Formulate Hölder’s inequality. (5pt)

Solution: If p ∈ [1,∞] and 1/p + 1/q = 1 and g1 ∈ Lp and g2 ∈ Lq, then ∥g1g2∥ ≤
∥g1∥p∥g2∥q.

d*) Show that ∥f∥∞ = limp→∞ ∥f∥p. (10pt)

Hint: Show that ∥f∥p ≤ (∥f∥1)1/p (∥f∥∞)1−1/p and deduce that lim supp→∞ ∥f∥p ≤
∥f∥∞. Combine this with part b).

Solution: Since from b) we know

∥f∥∞ ≤ lim inf
p→∞

∥f∥p,

it is enough to prove
lim sup
p→∞

∥f∥p ≤ ∥f∥∞.

Recall ∥f∥p =
(∫

Ω |f |pdµ
)1/p

. By Hölder’s inequality, we know (using g1 = |f | and
g2 = |f |p−1) that

(∥f∥p)p =
∫
Ω
|f |pdµ =

∫
Ω
g1g2dµ ≤ ∥g1∥1∥g2∥∞ = ∥f∥1∥|f |p−1∥∞ = ∥f∥1 (∥f∥∞)p−1 ,

where the last equality follows from the definition of ∥f∥∞. So,

∥f∥p ≤ (∥f∥1)1/p (∥f∥∞)1−1/p

Taking lim supp→∞ on both sides leads to the desired

lim sup
p→∞

∥f∥p ≤ (∥f∥1)0 (∥f∥∞)1 = ∥f∥∞.
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3. Let (Ω,A,P) be a probability space, and let An ∈ A for n ∈ N, such that

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai) for all finite I ⊂ N.

That is, the Ai’s are mutually independent. Let

A = {ω ∈ Ω : ω ∈ Ai for infinitely many values of i}
= {ω ∈ Ω : for all n ∈ N there is an i ≥ n such that ω ∈ Ai}.

a) Show that A ∈ A. (10pt)

Solution: The definition of A translates to

A =
∞⋂
n=1

∞⋃
i=n

Ai.

Note that
⋃∞

i=nAi is in A for all n, because a σ-algebra is closed under countable unions,
and then A ∈ A because a σ-algebra is closed under countable intersections.

b) Show that if
∑∞

i=1 P(Ai) = ∞, then P(A) = 1. (10pt)

Hint: You may use 1− x ≤ e−x for all x ∈ R.

Solution: Note that

P(A) = 1− P(AC) = 1− P

( ∞⋃
n=1

∞⋂
i=n

(Ai)
C

)
≥ 1−

∞∑
n=1

P

( ∞⋂
i=n

(Ai)
C

)
.

Then we note that for any n, n′ ∈ N with n′ > n we have

P

( ∞⋂
i=n

(Ai)
C

)
≤ P

(
n′⋂
i=n

(Ai)
C

)
=

n′∏
i=n

P
(
(Ai)

C
)

by the independence of the Ai’s and thus the independence of the (Ai)
C . So,

P

( ∞⋂
i=n

(Ai)
C

)
≤

n′∏
i=n

(1− P(Ai)) ≤
n′∏
i=n

e−P(Ai) = e−
∑n′

i=n P(Ai),

where we have used the Hint in the second inequality. Note that because P(Ai) ≤ 1 <
∞ we have that

∑∞
i=1 P(Ai) = ∞ implies

∑∞
i=n P(Ai) = ∞ for all n ∈ N. Because

P
(⋂∞

i=n(Ai)
C
)
does not depend on n′ and P

(⋂∞
i=n(Ai)

C
)
≤ e−

∑n′
i=n P(Ai), for all n′ > n,

we obtain by n′ → ∞ that P
(⋂∞

i=n(Ai)
C
)
≤ e−

∑∞
i=n P(Ai) = 0 and therefore,

P(A) = 1− P(AC) ≥ 1−
∞∑
n=1

P

( ∞⋂
i=n

(Ai)
C

)
= 1−

∞∑
n=1

0 = 1.
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Let C be a circle with circumference 1 (i.e. with radius 1/(2π)). One by one randomly
chosen closed arcs (on C) denoted by Ii (i ∈ N) of respective lengths ℓi are colored red.
Assume further that 1 > ℓ1 ≥ ℓ2 ≥ · · · . Denote the midpoint of Ii by xi. The xi are
chosen independently and uniformly on C. Let S be the part of the circle that is colored
red. That is,

S = ∪∞
i=1Ii.

Note that the uniformity of the xi’s implies that for every c ∈ C and i ∈ N we have
P(c ∈ Ii) = ℓi. Define

kn = 2n+1 × n! and Kn =
n∑

i=1

ki both for n ∈ N.

For Kn−1 < i ≤ Kn let ℓi = 1/(2kn). So, there are kn arcs of length 1/(2kn).

c) Show that P(c ∈ S) = 1 for all c ∈ C, and that C will eventually be red almost
everywhere (with respect to Lebesque measure on C). (10pt)

Solution: Fix c ∈ C. Define Ai = {c ∈ Ii}, so P(Ai) = ℓi. Note that (with K0 = 0),

∞∑
i=1

P(Ai) =
∞∑
n=1

Kn∑
i=Kn−1+1

P(Ai) =
∞∑
n=1

Kn−1+kn∑
i=Kn−1+1

1/(2kn) =
∞∑
n=1

1/2 = ∞.

and apply part b to obtain that c is even in infinitely many Ii.

Now assume that we would have picked c ∈ C randomly according to Lebesque measure
(that is uniformly), then still P(c ∈ S) = 1, so S covers C almost everywhere.
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d*) Show that P(C = S) < 1. (10pt)

Hint: You may use the following approach:
Show that with positive probability, there is an infinite sequence of non-empty arcs
a1 ⊃ a2 ⊃ · · · of respective lengths 1/(2k1), 1/(2k2), · · · , such that an ∩ (∪Kn

i=1Ii) = ∅.
You can do this by first showing that a1 exists with strictly postive probability and then
condition on that an exists. Then split an in kn+1/(2kn) disjoint arcs of length 1/kn+1,
and show that with “desirable” probability at least one of those arcs does not contain
any of the xi for i ≤ Kn+1.
You may use without further proof that there exists z ∈ (0, 1), such that out of any
subset of j disjoint arcs of length 1/kn+1 the probability that at least one of those arcs
does not contain any of the xi with Kn < i ≤ Kn+1 is larger than 1− z−j for all n ∈ N.

Solution: Follow the hint: Partition C in k1 arcs of length 1/k1. The probability that
one of those arcs does not contain any of the points x1, · · · , xk1 is strictly positive (exact
probability is not important). Denote this probability by p1. Choose one such arc and
call it b1. Because the distance of a point in Ii to xi is at most ℓi/2, if b1 exists, it contains
a subarc a1 of length 1/(2k1) such that a1 ∩ (∪K1

i=1Ii) = ∅.

Now suppose that we have an of length 1/(2kn) such that an ∩ (∪Kn
i=1Ii) = ∅. Then

Partition an in kn+1/(2kn) = n+ 1 disjoint arcs of length 1/kn+1. The probability that
at least one of those subarcs contains none of the xi for Kn < i ≤ Kn + kn+1 = Kn+1 is
by the last part of the hint at least 1− zn+1 =: pn+1 for some z < 1. Arguing as for a1,
the probability that an+1 exists given that a1, · · · an exist is pn+1.

The probability that an exist on every level n ∈ N is bounded from below by
∏∞

n=1 pn,

which for every N ∈ N is equal to
∏N

n=1 pn ×
∏∞

n=N+1 pn. Then,

∞∏
N+1

pn =

∞∏
n=N+1

(1− zn) ≥ 1−
∞∑

n=N+1

zn = 1− zN+1

1− z
,

which is strictly positive for large enough N and the question is answered.
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